Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa
نویسندگان
چکیده
Miniature inverted-repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa.
منابع مشابه
Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous in high eukaryotic genomes. More than 178,000 MITE sequences of 338 families are present in the genome of rice (Oryza sativa) cultivar Nipponbare. Interestingly, only two of the 338 MITE families have homologous sequences in the genome of Brachypodium distachyon, a relative in the grass family. Therefore, the vast majority o...
متن کاملA genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
Transposable elements (TEs) have played important roles in the evolution of genes and genomes of higher eukaryotes. Among the TEs in the rice genome, miniature inverted-repeat transposable elements (MITEs) exist at the highest copy number. Some of MITEs in the rice genome contain poly(A) signals and putative cis-acting regulatory domains. Insertion events of such MITEs may have caused many stru...
متن کاملUsing rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs).
Recent studies of rice miniature inverted repeat transposable elements (MITEs), largely fueled by the availability of genomic sequence, have provided answers to many of the outstanding questions regarding the existence of active MITEs, their source of transposases (TPases) and their chromosomal distribution. Although many questions remain about MITE origins and mode of amplification, data accum...
متن کاملSurvey of transposable elements from rice genomic sequences.
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I...
متن کاملdetectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes, including plants and animals. Classified as a type of non-autonomous DNA transposable elements, they play important roles in genome organization and evolution. Comprehensive and accurate genome-wide detection of MITEs in various eukaryotic genomes can improve our understanding of their origins, transpos...
متن کامل